skip to main content


Search for: All records

Creators/Authors contains: "Ahmed, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Free, publicly-accessible full text available October 17, 2024
  3. Free, publicly-accessible full text available October 22, 2024
  4. This article investigates the feasibility of using regenerative energy from braking trains to charge electric buses in the context of New York City’s (NYC) subway and electric bus networks. A case study centered around NYC’s system has been performed to evaluate the benefits and challenges pertaining to the use of the preexisting subway network as a power supply for its new all-electric buses. The analysis shows that charging electric buses via the subway system during subway off-peak periods does not hinder regular train operation. In addition, having the charging electric buses connected to the third rail allows for more regenerative braking energy (RBE) to be recuperated, decreasing the energy wasted throughout the system. It was also found that including a wayside energy storage system (WESS) reduces the overall substation peak power consumption.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  5. Free, publicly-accessible full text available September 1, 2024
  6. Free, publicly-accessible full text available June 20, 2024
  7. Well-graded soils can be found in nature and in engineered structures, such as dams and embankments. Prediction of their behavior is still an engineering challenge in part due to the lack of data in the literature, arguably due to difficulties associated in testing these soils in the laboratory and in situ. Particularly, there is still debate over the effect of the increased range of particle sizes (i.e., widening gradation) on the shear strength and dilatancy of coarse-grained soils. This paper presents the results of drained and undrained isotropically-consolidated triaxial compression tests on six soil mixes of varying gradation. These soils were sourced from a single natural deposit and selectively sieved and mixed to isolate the effects of gradation from those of particle shape and mineralogy. The results indicate that the critical state lines in void ratio – mean effective stress space move downward as the gradation becomes wider. For the same state parameter, the soils with a wider gradation exhibit greater dilatancy and generate negative excess pore pressures with greater magnitudes than the poorly-graded soils. In drained conditions, the greater dilatancy of the well-graded soils leads to greater peak friction angles, while in undrained conditions it leads to greater undrained shear strengths. The results show that these differences in behavior can only be captured when interpreting the results in terms of the state parameter and normalized state parameter, while comparing the results in terms of the void ratio or relative density obscures the effect of differences in gradation. 
    more » « less